Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung.
نویسندگان
چکیده
Earlier work from this laboratory showed that abnormal fibroblast phenotypes isolated from fibrotic human lung produce factor(s) capable of inducing apoptosis and necrosis of alveolar epithelial cells in vitro [B. D. Uhal, I. Joshi, A. True, S. Mundle, A. Raza, A. Pardo, and M. Selman. Am. J. Physiol. 269 ( Lung Cell. Mol. Physiol. 13): L819-L828, 1995]. To determine whether epithelial cell death is associated with proximity to abnormal fibroblasts in vivo, the spatial distribution of epithelial cell loss, DNA fragmentation, and myofibroblasts was examined in the same tissue specimens used previously for fibroblast isolation. Paraffin sections of normal and fibrotic human lung were subjected to in situ end labeling (ISEL) of fragmented DNA and simultaneous immunolabeling of α-smooth muscle actin (α-SMA); replicate samples were subjected to electron microscopy and detection of collagens by the picrosirius red technique. Normal human lung exhibited very little labeling except for positive α-SMA immunoreactivity of smooth muscle surrounding bronchi and vessels. In contrast, fibrotic human lung exhibited moderate to heavy ISEL of interstitial, cuboidal epithelial, and free alveolar cells. ISEL of the alveolar epithelium was not distributed uniformly but was most intense immediately adjacent to underlying foci of α-SMA-positive fibroblast-like interstitial cells. Both electron microscopy and picrosirius red confirmed epithelial cell apoptosis, necrosis, and cell loss adjacent to foci of collagen accumulation surrounding fibroblast-like cells. These results demonstrate that the cuboidal epithelium of the fibrotic lung contains dying as well as proliferating cells and support the hypothesis that alveolar epithelial cell death is induced by abnormal lung fibroblasts in vivo as it is in vitro.
منابع مشابه
A key role for NOX4 in epithelial cell death during development of lung fibrosis.
UNLABELLED The pathogenesis of pulmonary fibrosis is linked to oxidative stress, possibly generated by the reactive oxygen species (ROS) generating NADPH oxidase NOX4. Epithelial cell death is a crucial early step in the development of the disease, followed only later by the fibrotic stage. We demonstrate that in lungs of patients with idiopathic lung fibrosis, there is strong expression of NOX...
متن کاملInvited Review ANIMAL MODELS OF HUMAN LUNG DISEASE Murine models of pulmonary fibrosis
Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294: L152–L160, 2008. First published November 9, 2007; doi:10.1152/ajplung.00313.2007.—Human pulmonary fibrosis is characterized by alveolar epithelial cell injury, areas of type II cell hyperplasia, accumulation of fibroblasts and myofibroblasts, and the deposition of extracellular matrix proteins. ...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملMultiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition.
There are currently few treatment options for pulmonary fibrosis. Innovations may come from a better understanding of the cellular origin of the characteristic fibrotic lesions. We have analyzed normal and fibrotic mouse and human lungs by confocal microscopy to define stromal cell populations with respect to several commonly used markers. In both species, we observed unexpected heterogeneity o...
متن کاملMurine models of pulmonary fibrosis.
Human pulmonary fibrosis is characterized by alveolar epithelial cell injury, areas of type II cell hyperplasia, accumulation of fibroblasts and myofibroblasts, and the deposition of extracellular matrix proteins. The result is a progressive loss of normal lung architecture and impairment in gas exchange. Pertinent features of the human disease include temporal heterogeneity of the fibrotic les...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 275 6 Pt 1 شماره
صفحات -
تاریخ انتشار 1998